应考方略 理综高

【温馨提示】这类问题涉及物质结构中很多不可类推的重要的化合物类型,它们属于非常规型化合物,是解决这类问题的关键点。

- 一是 XY 型非常规化合物: ①化学式符合的有: CO、NO、NaH; ②最简式符合的有: H_2O_2 、Na₂O₂、 C_2H_2 、 C_6H_6 等。
- 二是 XY_2 型非常规化合物: ①化学式符合的有 SO_2 、 NO_2 ; ②最简式符合的有: C_2H_4 、 C_3H_6 等。
- 三是 X_2Y_3 型非常规化合物: ①化学式符合的有: N_2O_3 ; ②最简式符合的有: C_4H_{60}

四是 X_2Y 型非常规化合物: N_2O_0

五是 XY₄型非常规化合物: CH₄、SiH₄等。

考点之五 等电子粒子问题

【例 5】甲、乙、丙、丁为前三周期元素形成的微粒,它们的电子总数相等。己知甲、乙、丙为双原子分子或二价双原子阴离子,丁为原子。

- (1) 丙与钙离子组成的离子化合物跟水反应产生一种可燃性气体,反应的化学方程式是_____。
- (2) 乙在高温时是一种还原剂,请用化学方程式表示它在工业上的一种重要用途:
 - (3) 在一定条件下, 甲与 02 反应的化学方程式是_
 - (4) 丁的元素符号是 . 它的原子示意图为
 - (5) 丁的氧化物的晶体结构与 ______ 的晶体结构相似。

分析与解答:根据题意,利用等电子粒子相关知识来进行切入,可迅速推断出丙 C_2 ²,其与钙离子结合的化合物为 CaC_2 ; 乙为 CO; 甲为 N_2 ; 丁为 Si。

正确答案: $(1)CaC_2+2H_2O=Ca$ (OH) $_2+C_2H_2\uparrow$; $(2)3CO+Fe_2O_3$ <u>高温</u> $2Fe+3CO_2$,工业上利用该反应进行炼铁。 (其它合理答案也可以); $(3)N_2+O_2$ <u>放电</u> 2NO; (4)Si、原子结构示意图(略): (5)金刚石。

练习: 1919 年, Langmuir 提出等电子原理:原子数相同、电子总数相同的分子,互为等电子,等电子体的结构相似、物理性质相近。

- (1) 根据上述原理,仅由第二周期元素组成的共价分子中互为等电子体的是 ______和 ______和 _____。
- (2) 此后,等电子原理又有所发展,例如,由短周期元素组成的微粒,只要其原子数相同,各原子最外层电子数之和相同,也可以互为等电子体,它们也具有似的结构特征。在短周期元素组成的物质中,与NO₂-互为等电子体的分子有

答案: (1) N₂ CO; CO₂ N₂O (2) O₃ SO₂

【温馨提示】这类问题涉及等电子粒子相关知识,在高考中常见于推断题中,是解决问题的切入口,学生必须高度重视。

- 一是2电子体: He、H⁻、Li⁺、Be²+;
- 二是 10 电子体: Ne、HF、H₂O、NH₃、CH₄、Na⁺、Mg²⁺、Al³⁺、NH₄⁺、H₃O⁺、N³⁻、O²⁻、F⁻、OH⁻、NH₂⁻;

三是 18 电子体: Ar、HCl、H₂S、PH₃、SiH₄、F₂、H₂O₂、C₂H₆、CH₃OH、N₂H₄、CH₄F、k⁺、Ca²⁺、P³、S²、HS⁻、Cl⁻、O₂²⁻。

四是核外电子总数及质子总数均相等的粒子: Na^+ 、 NH_4^+ 、 H_3O^+ (11 个质子、10 个电子); F^- 、 OH^- 、 NH_2^- (9 个质子、10 个电子); Cl^- 、 HS^- (17 个质子、18 个电子); N_2 、CO、 C_2H_2 (14 个质子、14 个电子)。

考点之六 弱电解质平衡移动问题

【例 6】苯酚具有弱酸性,但苯酚却不能使石蕊试剂变红, Fe^{3+} 易与 C_6H_5OH 反应生成稳定的离子,反应的化学方程式为: $Fe^{3+}+6C_6H_5OH \Longrightarrow [Fe(C_6H_5O)_6]^2+6H^+$

- (1) 试预测在苯酚钠溶液中逐滴加入 FeCl,溶液,可依次出现的现象:①现象:红褐色沉淀,离子方程式为_____:②现象:______。

分析与解答:根据题意可知,苯酚钠是强碱弱酸盐,而FeCl₃溶液是强酸弱碱盐,两者混合时, C_6H_5O -和 Fe^{3+} 都发生水解且相互促进,从而生成 Fe (OH) $_3$ 和 C_6H_5OH ,接着和FeCl₃溶液生成紫色溶液。但随着反应的不断进行,混合液中酸性增强,使 Fe (OH) $_3$ 沉淀逐渐溶解。然后,在依据平衡移动原理相关知识,则(2)中的各个问题便可迎刃而解。正确答案:(1)① Fe^{3+} +3 C_6H_5O +3 H_2O =Fe(OH) $_3$ \downarrow +3 C_6H_5OH ;②溶液变成紫色;③红褐色沉淀逐渐溶解。(2)①溶液由紫色变成浅绿色;②有红褐色沉淀产生,紫色褪去。

练习: 浅绿色的 Fe (NO₃)₂ 溶液中存在着如下的平衡: Fe²⁺+2H₂O → Fe (OH)₂+2H⁺。若往此溶液中加入盐酸,则溶液的颜色 ()

A. 绿色变深 B. 变得很浅 C. 变黄色 D. 不变**答案:** C

【温馨提示】这类问题涉及弱电解质的电离平衡移动方向,其解答问题的切入点就是利用化学平衡等相关知识进行解答。

- 一是改变温度法:升高温度平衡向右移动,降低温度平衡向左移动。
- 二是相同离子作用法: 例如, $NH_3 \cdot H_2O \longrightarrow NH_4^+ + OH^-$ 加入 NH_4Cl ($NH_4Cl = NH_4^+ + Cl^-$),平衡向左移动。
- 三是酸或碱作用法: 例如, $NH_3 \cdot H_2O \longrightarrow NH_4 + OH^-$ 加入酸, 则 $H^* + OH^- = H_2O$, 由于 $C(OH^-)$ 减少, 会使平衡向右移动。

四是沉淀转移法:例如,在硫化氢溶液中加入硫酸铜溶液,因生成 CuS 沉淀而使平衡向右移动。其离子反应为: $H_2S=H^*+HS^-$ 、 $HS^-\longrightarrow H^*+S^2$ 、 $S^2+Cu^2^*=CuS\downarrow$,总反应式为: $Cu^2^*+H_2S=CuS\downarrow+2H^*$ 。

五是气体逸出法:例如,在二氧化硫的溶液中加盐酸,因 c (H*)增大而使 SO_2 逸出,平衡向左移动。其离子反应为: $H_2SO_3 \longrightarrow H^* + HSO_3^-$ 、 $HSO_3^- + H^* = SO_2 \uparrow + H_2O_3$

六是氧化还原法:例如,在氢硫酸溶液中加入浓硝酸,